Showing 50 of total 50 results (show query)

bioc

systemPipeR:systemPipeR: Workflow Environment for Data Analysis and Report Generation

systemPipeR is a multipurpose data analysis workflow environment that unifies R with command-line tools. It enables scientists to analyze many types of large- or small-scale data on local or distributed computer systems with a high level of reproducibility, scalability and portability. At its core is a command-line interface (CLI) that adopts the Common Workflow Language (CWL). This design allows users to choose for each analysis step the optimal R or command-line software. It supports both end-to-end and partial execution of workflows with built-in restart functionalities. Efficient management of complex analysis tasks is accomplished by a flexible workflow control container class. Handling of large numbers of input samples and experimental designs is facilitated by consistent sample annotation mechanisms. As a multi-purpose workflow toolkit, systemPipeR enables users to run existing workflows, customize them or design entirely new ones while taking advantage of widely adopted data structures within the Bioconductor ecosystem. Another important core functionality is the generation of reproducible scientific analysis and technical reports. For result interpretation, systemPipeR offers a wide range of plotting functionality, while an associated Shiny App offers many useful functionalities for interactive result exploration. The vignettes linked from this page include (1) a general introduction, (2) a description of technical details, and (3) a collection of workflow templates.

Maintained by Thomas Girke. Last updated 5 months ago.

geneticsinfrastructuredataimportsequencingrnaseqriboseqchipseqmethylseqsnpgeneexpressioncoveragegenesetenrichmentalignmentqualitycontrolimmunooncologyreportwritingworkflowstepworkflowmanagement

53 stars 11.52 score 344 scripts 3 dependents

bioc

chipseq:chipseq: A package for analyzing chipseq data

Tools for helping process short read data for chipseq experiments.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

chipseqsequencingcoveragequalitycontroldataimport

6.35 score 91 scripts 4 dependents

bioc

ChIPQC:Quality metrics for ChIPseq data

Quality metrics for ChIPseq data.

Maintained by Tom Carroll. Last updated 5 months ago.

sequencingchipseqqualitycontrolreportwriting

5.45 score 140 scripts

bioc

transcriptR:An Integrative Tool for ChIP- And RNA-Seq Based Primary Transcripts Detection and Quantification

The differences in the RNA types being sequenced have an impact on the resulting sequencing profiles. mRNA-seq data is enriched with reads derived from exons, while GRO-, nucRNA- and chrRNA-seq demonstrate a substantial broader coverage of both exonic and intronic regions. The presence of intronic reads in GRO-seq type of data makes it possible to use it to computationally identify and quantify all de novo continuous regions of transcription distributed across the genome. This type of data, however, is more challenging to interpret and less common practice compared to mRNA-seq. One of the challenges for primary transcript detection concerns the simultaneous transcription of closely spaced genes, which needs to be properly divided into individually transcribed units. The R package transcriptR combines RNA-seq data with ChIP-seq data of histone modifications that mark active Transcription Start Sites (TSSs), such as, H3K4me3 or H3K9/14Ac to overcome this challenge. The advantage of this approach over the use of, for example, gene annotations is that this approach is data driven and therefore able to deal also with novel and case specific events. Furthermore, the integration of ChIP- and RNA-seq data allows the identification all known and novel active transcription start sites within a given sample.

Maintained by Armen R. Karapetyan. Last updated 5 months ago.

immunooncologytranscriptionsoftwaresequencingrnaseqcoverage

3.30 score 2 scripts