Showing 6 of total 6 results (show query)
bioc
epiNEM:epiNEM
epiNEM is an extension of the original Nested Effects Models (NEM). EpiNEM is able to take into account double knockouts and infer more complex network signalling pathways. It is tailored towards large scale double knock-out screens.
Maintained by Martin Pirkl. Last updated 5 months ago.
pathwayssystemsbiologynetworkinferencenetwork
1 stars 5.83 score 1 scripts 3 dependentsbioc
bnem:Training of logical models from indirect measurements of perturbation experiments
bnem combines the use of indirect measurements of Nested Effects Models (package mnem) with the Boolean networks of CellNOptR. Perturbation experiments of signalling nodes in cells are analysed for their effect on the global gene expression profile. Those profiles give evidence for the Boolean regulation of down-stream nodes in the network, e.g., whether two parents activate their child independently (OR-gate) or jointly (AND-gate).
Maintained by Martin Pirkl. Last updated 5 months ago.
pathwayssystemsbiologynetworkinferencenetworkgeneexpressiongeneregulationpreprocessing
2 stars 4.60 score 5 scriptsbioc
nempi:Inferring unobserved perturbations from gene expression data
Takes as input an incomplete perturbation profile and differential gene expression in log odds and infers unobserved perturbations and augments observed ones. The inference is done by iteratively inferring a network from the perturbations and inferring perturbations from the network. The network inference is done by Nested Effects Models.
Maintained by Martin Pirkl. Last updated 5 months ago.
softwaregeneexpressiondifferentialexpressiondifferentialmethylationgenesignalingpathwaysnetworkclassificationneuralnetworknetworkinferenceatacseqdnaseqrnaseqpooledscreenscrisprsinglecellsystemsbiology
2 stars 4.60 score 2 scriptsbioc
dce:Pathway Enrichment Based on Differential Causal Effects
Compute differential causal effects (dce) on (biological) networks. Given observational samples from a control experiment and non-control (e.g., cancer) for two genes A and B, we can compute differential causal effects with a (generalized) linear regression. If the causal effect of gene A on gene B in the control samples is different from the causal effect in the non-control samples the dce will differ from zero. We regularize the dce computation by the inclusion of prior network information from pathway databases such as KEGG.
Maintained by Kim Philipp Jablonski. Last updated 4 months ago.
softwarestatisticalmethodgraphandnetworkregressiongeneexpressiondifferentialexpressionnetworkenrichmentnetworkkeggbioconductorcausality
13 stars 4.59 score 4 scriptslevimcclenny
BoolFilter:Optimal Estimation of Partially Observed Boolean Dynamical Systems
Tools for optimal and approximate state estimation as well as network inference of Partially-Observed Boolean Dynamical Systems.
Maintained by Levi McClenny. Last updated 7 years ago.
3.70 score 10 scripts